Exercises ToolMeeting
Pau Rué & A. J. Pons

I. 1D DIFFUSION EQUATION

As a first example of the things we have learned in the previous part of the ToolMeeting
we are going to solve the Diffusion Equation in one dimension using periodic boundary

conditions:

di(x,t)
dt

To solve this equation we are going to use Euler’s evolution scheme and one of the

= DV*)(x,1) (1)

properties of the Fourier Transform.

A. Euler scheme

First order ordinary differential equations

dy(x,t)
—n = N(x,n) (2)

may be solved using Euler’s evolution scheme:
Uit =4+ 0tN (24, n) (3)

where ' = (x = idx,t = ndt).

B. Fourier transforms

Fourier Transform is defined as follows
bl = (F¥)(K) = [ w(x) exp ™ dk (4)
and the Inverse Fourier Transform as

o

~

V60 = (F7)0) = [ i) exp™*ax. (5)

— 00

Therefore, derivatives in real space may be transformed to products in Fourier space:

F(Vip)(k) = =ik () (k). (6)
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As a consequence, the derivative term in Eq. (1), may be written as

V(x,t) = FH{(=ik)2(FY) | (x,1). (7)
So, to solve Eq. (1) numerically, we use the following iteration scheme:

Vit = g+ tDF T {(—ik)* () }

n
7

C. Python code

To solve the equation with Python we will use the following class and functions defined

in the scripts Parameters.py and Functions.py, respectively:
e Parameters class. It will contain all the parameters to be given to functions.
e fIt_1D(Data), ifft_1D(Data), Freq_1D(n,dx) for the Fourier commands
e Euler_Step(psi,p,Change_t=True) for the Euler method

e Plot_1D(psi,p,Add_Gaussian=True) to plot the results

II. EXERCISE:

Using previous conceps, solve the following equation:

dy(x,1)
dt

= —oVi(x,t) (9)
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III. 2D SWIFT-HOHENBERG

Swift-Hohenberg equation [1] [2]

dy(x, 1)
dt

= e(x,t) — (V2 + 1% (x,t) + g¢*(x, 1) — ¢°(x, 1) = N(x,1) (10)

may produce stripes, hexagons, quasi-crystal patterns, superlatices, etc. This equation has
been used extensively to study instabilities (e.g. Eckhaus or Zigzag instabilities) produced

in pattern forming systems.

A. Semi-implicit method

To solve this equation we are going to use a semi-implicit method. We may split the
right-hand side of Eq. (10) in its linear and nonlinear part:

dip(x, 1)
dt

= LIy, )] + N[y (x, 1)] (11)

First, we consider the backwards derivative approximation of the linear part:

Pt =+ StL(3p g n + 1) (12)

Y

and from this we get ¢!

;" in terms of ¢, and some combinations of Fourier opeartions. We

substitute the /7" in the nonlinear part of the right-hand side of Eq. (10) with an error of

0(6t?). So, we have

=i+ N (13)

B. Python code

Using the class Parameters and the following functions (defined in Functions.py)
e IC_2D(N kx,xs) to get the initial conditions

e It 2D(psi), ifft_ 2D(Data), Freq 2D (nx,ny,dx) for the Fourier tranasform operations in
2D

e Euler_Step(psi,p,Change_t=True)
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e Plot_2D(psi,p) to plot results

shown in Fig. 1.

solve the equation. Once you have implemented the solution check that you get the behaviour
)

_

FIG. 1: Simulation results a) Stripes (e = 0.3,¢g = 0.0, random initial conditions). b) Hexagons
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(e = 0.1,g = 1.0, random initial conditions). c¢) Zigzag instability (e = 0.3,¢g = 0.0, initial
conditions=sine, kx=0.88357 + random perturbation). d) Eckhaus instability (¢ = 0.3,¢9 = 0.0),

initial conditions=sine, kx=1.178 + random perturbation).
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