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Abstract

A homogeneously broadened unidirectional ring laser can emit in several longitudinal modes for large enough pump and cavity length
because of Rabi splitting induced gain. This is the so called Risken–Nummedal–Graham–Haken (RNGH) instability. We investigate
numerically the properties of the multi-mode solution. We show that this solution can coexist with the single-mode one, and its stability
domain can extend to pump values smaller than the critical pump of the RNGH instability. Moreover, we show that the multi-mode
solution for large pump values is affected by two different instabilities: a pitchfork bifurcation, which preserves phase-locking, and a
Hopf bifurcation, which destroys it.
! 2005 Elsevier B.V. All rights reserved.
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0. Introduction

The Risken–Nummedal–Graham–Haken (RNGH) insta-
bility was first described in two independent papers in 1968
[1,2]. In short, the instability consists in the destabilization
of single longitudinal-mode emission, which appears imme-
diately above the lasing threshold in a single transverse-
mode homogeneously-broadened unidirectional ring laser,
in favor of multilongitudinal mode emission. The physical
mechanism responsible for that instability is the Rabi split-
ting of the lasing transition, induced by the lasing mode,
which leads to the appearance of gain for the sideband
modes [3–5].

After the instability, the laser emits in a pulsing regime
because of the beating between different longitudinal

modes, which are phase-locked. It is to be emphasized that
no inhomogeneity, nor spectral nor spatial, is needed for
multi-mode emission. For a recent review of the RNGH
instability, see [6] and references therein.

Although some analytical work can be done regarding
what happens after the instability occurs, it is evident
that the multi-mode emission regime needs to be analyzed
numerically. The situation is similar to that of the Lorenz–
Haken (LH) instability, which is the single-mode counter-
part of the RNGH instability. However, while the dynamics
associated with the LH instability has been completely and
since a long time characterized through a large number of
numerical studies [7,8], a lot of work has still to be done to
achieve the same degree of knowledge for the RNGH
instability.

The first numerical study about the dynamics associated
with the RNGH instability was carried out by Risken and
Nummedal themselves [9] but since then, along almost 40
years, only a few works have been devoted to that [3,10–
14]. It must also be noted that some of these studies are
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quite superficial as they were intended to show some exam-
ples of the pulsing regime rather than characterizing it.

An important aspect of the RNGH instability is the
supercritical or subcritical character of the bifurcation.
We remind that if the pump parameter A is the control
parameter and Ai is the pump value at which the single-
mode solution destabilizes (also known as the second laser
threshold), the bifurcation is supercritical if the multi-mode
solution that arises from the instability exists only for
A > Ai, and it is subcritical if it exists also for A < Ai.
In the latter case, the multi-mode solution will coexist
with the stable single-mode solution in the interval
Asub 6 A 6 Ai, where Asub must be in general determined
numerically. This region of the parameter space is called
hard excitation domain, because within that domain a large
perturbation of the stable single-mode solution allows to
make the transition to the multi-mode solution.

The understanding of this question may be important
for the correct interpretation of the experimental results
recently obtained in erbium-doped fiber lasers (EDFLs)
[15–18] (see also [6]). In fact, if the bifurcation is subcritical
the self-pulsing regime may be observed experimentally for
pump values smaller than the instability threshold Ai given
by the linear stability analysis of the single-mode solution,
and the transition from cw emission to self-pulsing would
be discontinuous.

For the RNGH instability the instability domain is usu-
ally represented in the hA,ai plane, where a is the properly
scaled side-mode frequency. The instability domain has the
shape of a tongue delimited by the curves a! and a+, which
merge at the critical point (Ac,ac) (see Fig. 1). ac is the crit-
ical frequency at which the instability threshold Ai attains
its minimum value Ac. The single-mode solution is unstable
if, for a given pump A, there is at least one side-mode
whose frequency a lies inside the tongue.

A number of numerical and analytical studies have
shown that the multi-mode solution exists not only inside

the instability domain, but also for a < a! and A > Ac,
where the linear stability analysis predicts stable single-
mode emission.

This result was found numerically already by Risken
and Nummedal in their second paper of 1968 [9]. They
showed that, fixing A > Ac and decreasing a from an initial
value larger than a+, the single-mode solution bifurcates to
the multi-mode solution at a+ and this solution persists
even when the other boundary a! is crossed. Risken and
Nummedal were not able to determine the lower boundary
of the existence domain of the multi-mode solution,
because the numerical analysis of that solution is problem-
atic for small a. In fact, as a decreases the pulses becomes
higher and narrower and in order to reproduce them cor-
rectly a very small spatial stepsize is needed, which implies
increasing computation time.

Later on, Haken and Ohno [19–21] derived a generalized
Ginzburg–Landau equation for the critical (unstable)
mode and found again the coexistence of the two solutions,
which are the minima of an effective potential. They also
showed that the transition from single-mode to multi-mode
emission can be supercritical or subcritical depending on
the frequency a, but they did not write an analytic expres-
sion of this result.

Simpler analytic results can be found considering some

particular limits for the parameters c ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ck=c?

q
and r ¼

j= ffiffiffiffiffiffiffiffiffickc?
p , where j, c? and ck are the decay rates of electric

field, medium polarization and population inversion.
In the limit of class-B lasers (c # 1,r $ 1), for which

Ac = 9, Fu [22] derived analytically an unambiguous con-
dition: If the pump parameter A is the bifurcation
parameter, the bifurcation is supercritical (subcritical)
when a > ac (a < ac). This result has been recently gener-
alized for conditions outside the uniform field limit [6].
The same result was found by Carr and Erneux in a
slightly different limit for class-B lasers (c # 1,r % 1)
[23].

All these results mean that multi-mode emission can be
found for parameter settings for which the single-mode
solution is still stable. Nevertheless, the minimum instabil-
ity threshold pump Ac = 9 has been always found to be a
lower bound for multi-mode emission. In general, the con-
dition that determines sub- or supercritical bifurcation is
not known, and it remains to be determined whether the
multi-mode solution can exist not only for a < a!, but also
for A < Ac outside the class-B limit.

In this paper we address this question and show that, out-
side the class B-limit, the multi-mode solution can indeed
exist for A < Ac although not below the limit A = 9. More-
over, we perform an accurate study of the multi-mode solu-
tion and show that, increasing the pump power A for a fixed
frequency a, the solution is affected by two instabilities in
sequence. The first is a pitchfork instability, which breaks
the symmetry of the solution, but preserves phase-locking.
The second is a Hopf instability, which unlock the phases,
introducing a slow modulation of the pulses.
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Fig. 1. Instability domain of the single-mode solution for c = 1 and
r = 0.05. For this choice of the parameters we have Ac = 14.93, ac = 4.47,
and amin = 4.40.
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In Section 1 we introduce the model equations and recall
the main results concerning the RNGH instability, in Sec-
tion 2 we illustrate and comment the numerical results and
finally in Section 3 we draw our conclusions.

1. Model

Consider an incoherently pumped and homogeneously
broadened two-level active medium of length Lm, con-
tained in a ring cavity of length Lc, interacting with a uni-
directional plane wave laser field. We assume that the
cavity is resonant with the atomic transition frequency
and that the cavity mirrors reflectivities are close to unity
so that the uniform field limit holds. The Maxwell–Bloch
equations describing such a laser can be written in the form
[6]

os þ ofð ÞF ðf; sÞ ¼ rðAP ! F Þ; ð1Þ
osP ðf; sÞ ¼ c!1ðFD! P Þ; ð2Þ
osDðf; sÞ ¼ c½1! D!ReðFP Þ*. ð3Þ

In these equations F(f, s) is the normalized slowly varying
envelope of the laser field and P(f, s) and D(f, s) are the
normalized slowly varying envelope of the medium polari-
zation and the population inversion, respectively (see [6]
for the normalizations). The parameters A, r and c have
been already defined in the Introduction. We use the adi-
mensional time s and longitudinal coordinate f, which
are related with time t and space z through s ¼ ffiffiffiffiffiffiffiffiffickc?

p t
and f ¼ 2pz=ð~aLmÞ, where

~a ¼ 2pc
Lc

ffiffiffiffiffiffiffiffiffickc?
p ð4Þ

is the adimensional free spectral range of the cavity, being c
the light velocity in the host medium. The actual free spec-
tral range of the cavity, FSR, is related to ~a by

FSR ¼ 2pc
Lc

¼ ðc~aÞc?; ð5Þ

hence c~a represents the FSR measured in units of the
homogeneous linewidth. The boundary condition for the
electric field

F ð0; sÞ ¼ F ð2p=~a; sÞ ð6Þ

means that F can be expressed as a superposition of plane
waves with a spatial wave-number a equal to an integer
multiple of ~a (with our scaling of space and time a de-
notes both the spatial wave-number and the temporal
frequency).

Eqs. (1)–(3) have two stationary solutions, the laser-off
solution F ¼ P ¼ 0 and D ¼ 1, and the resonant single-
mode lasing solution F ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
A! 1

p
ei/; P ¼ F =A and D ¼

1=A, where / is an arbitrary phase. This solution appears
at the lasing threshold A = 1.

The linear stability analysis of the single-mode solution
has been reported many times, see e.g., [6]. This solution is
unstable for a given A if a! < a < a+ with

a+ ¼ x+ 1þ cr
A! x2

+

" #
; ð7Þ

x2
+ ¼ 1

2
3ðA! 1Þ ! c2 +

ffiffiffi
R

ph i
; ð8Þ

R ¼ ðA! 1ÞðA! 9Þ ! 6c2ðA! 1Þ þ c4. ð9Þ

x±is the imaginary part of the eigenvalue whose real part
becomes positive at the bifurcation point. If c # 1 and/or
r # 1 (as in this paper), we have x± $ a±. Eqs. (7)–(9) give
the bifurcation line on the hA, ai plane. The instability oc-
curs for a minimum pump when A = Ac and a = ac where

Ac ¼ 5þ 3c2 þ 2
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2 þ 2Þðc2 þ 1Þ

p

is a solution of the equation R = 0, and ac can be obtained
from Eqs. (7) and (8) setting R = 0 and A = Ac. In Fig. 1,
we represent the instability boundary on the hA, ai plane
for c = 1 and r = 0.05.

2. Numerical results

We have numerically integrated Eqs. (1)–(3) for fixed
relaxation rates c = 1 and r = 0.05, letting the frequency
a and the pump A as variable parameters. Notice that,
although r # c, this choice of the parameters does not
mean that we are considering a class-A laser, i.e., a laser
where the time evolution of electric field is much slower
than those of the material variables. This would be true
in the single-mode limit, but here we are studying a
multi-mode laser, where the nth side-mode oscillates at
an angular frequency an ¼ n~a of order 1 or larger, therefore
the time scale of the electric field is comparable to those of
the material variables, as in class-C lasers.

Our choice of r corresponds to a mirror transmissivity T
close to 0.1. In fact, if distributed losses are negligible, the
cavity linewidth r and the free spectral range ~a are related
by r ¼ ~aT=ð2pÞ, and we will consider values of ~a around 4.

The integration method is based on a modal expansion
of the electric field [14]

F ðf; sÞ ¼
XN

n¼!N

ein~affnðsÞ; ð10Þ

which allows to convert Eqs. (1)–(3) into a set of ordinary
integro-differential equations for the 2N + 1 complex mode
amplitudes fn and for the variables Pm(s) = P(fm,s) and
Dm(s) = D(fm,s), with m = 1 . . . M. The equations are
solved numerically using a standard Runge–Kutta routine
with adaptive step-size. Since, as commented above, the
equations are not particularly stiff, it turns out that the
average temporal step-size selected by the routine is rather
large, of order 10!2.

For the present analysis we verified that 11 modes
(N = 5) and a spatial grid of M = 21 points, corresponding
to a spatial step-size equal to 0.05, are enough to reproduce
accurately the total electric field. In fact, if the dynamical
variables are normalized in such a way that the stationary
intensity of the homogeneous solution is equal to unity, it
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turns out that, even for the larger pump values considered,
the intensities of the nth side-modes is of order 10!n.
Hence, modes with jnjP 6 can be safely neglected.

We proceeded as follows: first we fixed a between a! and
a+ and took a pump value for which the single-mode solu-
tion is unstable. Then we varied the pump A in both direc-
tions to determine the boundaries of the multi-mode
solution. We repeated the operation for several values of
a even moving below a!. In Fig. 2 the boundary of
multi-mode emission found in this way is represented with
a dashed-dotted line together with the boundary of the sin-
gle-mode solution instability domain, indicated by the solid
line. The shadowed area marks the domain where both the
single-mode and the multi-mode solutions are stable.

Three features of the bistability domain are of particular
interest:

(i) The domain extends to the left up to A ’ 13, well
below Ac = 14.93.

(ii) The domain extends up to a frequency !a ’ 4:56 larger
than ac = 4.47. Hence, considering A as the bifurca-
tion parameter, the bifurcation is subcritical not only
for amin < a < ac, as shown by Fu in the class-B limit,
but also for ac < a < !a.

(iii) The domain extends up to a minimum frequency
amin $ 3.76.

Let us now characterize the multi-mode dynamics exist-
ing in the range of parameters covered in Fig. 2. There are
two clearly different regimes that are separated by the
dashed line that crosses the bistability regime (marked as
HB). At the left of the dashed line, multi-mode emission
is periodic, the modal intensities are constant and phases
are locked. The dashed line marks a Hopf bifurcation. At
the right of this line the dynamics of the total intensity is
quasi-periodic and the modal intensities and the relative
phases oscillate periodically in time.

In order to analyze this in more detail, we describe now
the dynamics of the system for the particular value a = 4.2
as a function of the pump parameter A. In Fig. 3 the modal
intensities corresponding to the central mode, I0, and the
two first sidebands (modes I±1 and I±2) are represented
as a function of A.

There are three clearly distinguishable zones in Fig. 3:

(i) For A < APB = 14.49, the modal intensities are con-
stant and single-valued, and symmetric modes have
the same intensity (I+n = I!n, n = 1, . . ., 5).

(ii) For APB < A < AHB = 15.33, the modal intensities are
constant but there are two possible solutions, denoted
as Ina and Inb in the figure, and symmetric modes have
different intensities (I+n 5 I!n). Precisely, when
I+n = Ina, then I!n = Inb, and viceversa.

(iii) For A > AHB the modal intensities are no more con-
stant (for this domain, in the figure we have repre-
sented the extrema of the modal intensities).

Hence, looking at the modal intensities, we can conclude
that they are subject to a pitchfork, symmetry breaking,
bifurcation at A = APB and to a Hopf bifurcation at
A = AHB.

We studied more in detail the two multi-mode self-
pulsing solutions that coexist in the intervalAPB < A < AHB.
One could imagine that these solutions differ in the total
intensity, because all the modes placed on one side of the
spectrum have intensities larger than the corresponding
modes on the other side. But this is not the case: the shape
of the pulses emitted by the laser is exactly the same for the
two solutions. How this can be possible can be understood
looking at the behavior of modal frequencies and phases.

In the upper panel of Fig. 4 we show the calculated fre-
quencies of the central mode (x0) and of the first side-modes
(x±1), to which we have subtracted the empty cavity
frequencies ±a. In the lower panel of the same figure we rep-
resent in radians the relative phase W1 = /+1 + /!1 ! 2/0,

Fig. 2. The instability domain of Fig. 1 is represented together with the
existence domain of the multi-mode solution, delimited by the dashed-
dotted line. In the shaded area there is bistability between the single- and
the multi-mode solution. The dashed line indicates the threshold for the
Hopf bifurcation of the multi-mode solution.

Fig. 3. Modal intensities as a function of the pump A for the central
modes and the first two side-modes. The parameters are r = 0.05, c = 1,
and a = 4.2. Beyond the Hopf bifurcation the intensities are no longer
constant, and the lines indicate the extrema of the oscillations.
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where/i is the phase of the ith mode. If the solution is phase-
lockedW1, as well as all the other relative phasesWi that can
be defined in the same way, must be constant.

We see that at the pitchfork bifurcation the modal fre-
quencies experience a shift in the same direction, positive
or negative for the two solutions. This shift however pre-
serves phase-locking, although W1 is no longer equal to 0
as for A < APB, but it can take two opposite values, associ-
ated with the two solutions. Notice that the maximum fre-
quency separation between the two phase-locked solution
is about 0.02.

The combination of different mode intensities, frequen-
cies and relative phases makes it possible that the total
intensities for the two solutions are identical.

Let us now analyze the laser dynamics beyond the Hopf
bifurcation A = AHB. In Figs. 5–7 we considered the three
different values for the pump A = 15.4, A = 16 and A =
16.8. In each figure the upper panel shows the total inten-
sity, the middle panel the modal intensities of the central
mode and of the first two side-modes, and the lower panel
the relative phase W1 defined above, measured in radians.
The total intensity displays a slow modulation with period
of some hundreds time units, superimposed to the much
faster self-pulsing oscillations of period 2p/a $ 1.5. This
slow modulation is clearly related to the oscillations of
the modal intensities and of the relative phase, which have
the same period. The period is almost the same in Figs. 5
and 6, and it is almost twice larger in Fig. 7. The strength
of the modulation increases with A, and the relative phase
W1 passes from the almost regularly periodic oscillations of
Fig. 5(c) to the behavior shown in Fig. 7(c), where W1

remains most of the time close to 0.
We notice that the slow modulation frequency for the

smaller values of A is close to the maximum frequencyFig. 4. Modal frequencies (a) and relative phase (b) as a function of the
pump A in the region around the pitchfork bifurcation. The relative phase
W1 is measured in radians.

Fig. 5. Total intensity (a), intensities of the central mode and of the first
two side-modes (b), and relative phase W1 (c) after the Hopf bifurcation.
A = 15.4.

Fig. 6. Same as Fig. 5 for A = 16.0.

Fig. 7. Same as Fig. 5 for A = 16.8.
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separation between the two phase-locked solutions that is
achieved immediately before A = AHB. Hence, we may
interpret the dynamical state that arises from the Hopf
bifurcation as a state where the two phase-locked solutions
are present simultaneously, and oscillate at their beat note.

Let us finally comment that we have not found chaotic
behavior. Certainly the quasi-periodic dynamics of the total
intensity is more involved as pump increases, but multi-
mode emission disappears before more complex dynamics
develops.

3. Conclusion

We have numerically and theoretically investigated bista-
bility between single-mode and multi-longitudinal mode
solutions in the standard ring-cavity two-level laser within
the uniform field limit. We have determined the domain
of coexistence between the single-mode andmulti-longitudi-
nal mode solutions for a class-C laser (we have used c = 1,
and r = 0.05) finding that this domain is relatively wide. In
particular we have found that the domain of coexistence is
different from that corresponding to a class-B laser as it
extends for a slightly larger than ac and for A < Ac (for
class-B lasers it exists for a 6 ac and AP Ac [22,23]). We
have also found that the multimode solution undergoes a
pitchfork bifurcation (which is a symmetry breaking bifur-
cation) and a subsequent Hopf bifurcation that destroys
mode-locking. In the near future we plan to extend this
numerical study to a situation closer to that of the experi-
mental conditions in [18], in order to determine up to what
extent the deviations from the theoretial predictions could
be interpreted as a manifestation of the coexistence between
single-mode and multi-longitudinal mode emission.
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