Neuronal oscillations: from single-unit activity to emergent dynamics and back
Nov 07, 2016
Belén de Sancristóbal Alonso, Presentation date: July 22, 2013
Author: Belén de Sancristóbal Alonso
Title: Neuronal oscillations: from single-unit activity to emergent dynamics and back
Director: J. García-Ojalvo and J. M. Sancho
Presentation date: July 22, 2013
Link to text: http://www.tdx.cat/handle/10803/129072
Abstract: The main objective of this thesis is to better understand information processing in neuronal networks in the presence of subthreshold oscillations. Most neurons propagate their electrical activity via chemical synapses, which are only activated when the electric current that passes through them surpasses a certain threshold. Therefore, fast and intense discharges produced at the neuronal soma (the action potentials or spikes) are considered the basic unit of neuronal information. The neuronal code is understood, then, as a binary language that expresses any message (sensory stimulus, memories, etc.) in a train of action potentials. Circuits of thousands of interconnected neurons give rise to certain rhythms, revealed in collective activity measures such as electroencephalograms (EEG) and local field potentials (LFP). Synchronization of action potentials of each cell, triggered by stochastic fluctuations of the synaptic currents, cause this periodicity at the network level.To understand whether these rhythms are involved in the neuronal code we studied three situations. First, in Chapter 2, we showed how an open chain of neurons with an intrinsically oscillatory membrane potential filters a periodic signal coming from one of its ends. The response of each neuron (to spike or not) depends on its phase, so that each cell receives a message filtered by the preceding one. Each presynaptic action potential causes a phase change in the postsynaptic neuron, which depends on its position in the phase space. Those incoming periods that are able to synchronize the subthreshold oscillations, keep the phase of arrival of action potentials fixed along the chain. The original message reaches intact the last neuron provided that this phase allows the discharge of the transmembrane voltage.I the second case, we studied a neuronal network with connections to both long range and close neighbors, in which the subthreshold oscillations emerge from the collective activity apparent in the synaptic currents. The inhibitory neurons provide a rhythm to the excitability of the network. When inhibition is low, the likelihood of a global discharge of the neuronal population is high. In Chapter 3 we show how this rhythm causes a gap in the discharge frequency of neurons: either they pulse single spikes or they fire bursts of high intensity. The LFP phase determines the state of the neuronal network, coding the activity of the population: its minima indicate the simultaneous discharge of many neurons, while its maxima indicate the coexistence of bursts due to local decreases of inhibition at global states of excitation. In Chapter 4 we consider coupling between two neural networks in order to study the interaction between different rhythms. The oscillations indicate recurrence in the synchronization of collective activity, so that during these time windows a population optimizes its impact on a target network. When the rhythm of the emitter and receiver population differ significantly, the communication efficiency decreases as the phases of maximum response of each LFP signal do not maintain a constant difference between them.Finally, in Chapter 5 we studied how oscillations typical of the collective sleep state give rise to stochastic coherence. For an optimal noise intensity, modulated by the excitability of the network, the LFP reaches a maximal regularity leading to a refractory period of the neuronal population.In summary, this Thesis shows scenarios of interaction between action potentials, characteristics of the dynamics of individual neurons, and the subthreshold oscillations, outcome of the coupling between the cells and ubiquitous in the dynamics of neuronal populations . The results obtained provide functionality to these emerging rhythms, triggers of synchronization and modulator agents of the neuronal discharges and regulators of the communication between neuronal networks.
Share: